Updated SFMT RNG code, removed Qt RNG
This commit is contained in:
parent
ed5f02bf7a
commit
a15eb6f29f
11 changed files with 653 additions and 557 deletions
|
@ -5,7 +5,6 @@ SET(common_SOURCES
|
|||
decklist.cpp
|
||||
get_pb_extension.cpp
|
||||
rng_abstract.cpp
|
||||
rng_qt.cpp
|
||||
rng_sfmt.cpp
|
||||
server.cpp
|
||||
server_abstractuserinterface.cpp
|
||||
|
@ -25,7 +24,6 @@ SET(common_SOURCES
|
|||
SET(common_HEADERS
|
||||
decklist.h
|
||||
rng_abstract.h
|
||||
rng_qt.h
|
||||
rng_sfmt.h
|
||||
server.h
|
||||
server_arrowtarget.h
|
||||
|
|
|
@ -1,16 +0,0 @@
|
|||
#include "rng_qt.h"
|
||||
#include <QDateTime>
|
||||
#include <stdlib.h>
|
||||
|
||||
RNG_Qt::RNG_Qt(QObject *parent)
|
||||
: RNG_Abstract(parent)
|
||||
{
|
||||
int seed = QDateTime::currentDateTime().toTime_t();
|
||||
qsrand(seed);
|
||||
}
|
||||
|
||||
unsigned int RNG_Qt::getNumber(unsigned int min, unsigned int max)
|
||||
{
|
||||
int r = qrand();
|
||||
return min + (unsigned int) (((double) (max + 1 - min)) * r / (RAND_MAX + 1.0));
|
||||
}
|
|
@ -1,13 +0,0 @@
|
|||
#ifndef RNG_QT_H
|
||||
#define RNG_QT_H
|
||||
|
||||
#include "rng_abstract.h"
|
||||
|
||||
class RNG_Qt : public RNG_Abstract {
|
||||
Q_OBJECT
|
||||
public:
|
||||
RNG_Qt(QObject *parent = 0);
|
||||
unsigned int getNumber(unsigned int min, unsigned int max);
|
||||
};
|
||||
|
||||
#endif
|
|
@ -1,5 +1,4 @@
|
|||
#include "rng_sfmt.h"
|
||||
#include "sfmt/SFMT.h"
|
||||
#include <QDateTime>
|
||||
#include <stdlib.h>
|
||||
#include <iostream>
|
||||
|
@ -7,19 +6,17 @@
|
|||
RNG_SFMT::RNG_SFMT(QObject *parent)
|
||||
: RNG_Abstract(parent)
|
||||
{
|
||||
std::cerr << "Using SFMT random number generator." << std::endl;
|
||||
|
||||
int seed = QDateTime::currentDateTime().toTime_t();
|
||||
init_gen_rand(seed);
|
||||
for (int i = 0; i < 100000; ++i)
|
||||
gen_rand64();
|
||||
// initialize the random number generator with a 32bit integer seed (timestamp)
|
||||
sfmt_init_gen_rand(&sfmt, QDateTime::currentDateTime().toTime_t());
|
||||
}
|
||||
|
||||
unsigned int RNG_SFMT::getNumber(unsigned int min, unsigned int max)
|
||||
{
|
||||
// To make the random number generation thread safe, a mutex is created around the generation.
|
||||
mutex.lock();
|
||||
uint64_t r = gen_rand64();
|
||||
uint64_t r = sfmt_genrand_uint64(&sfmt);
|
||||
mutex.unlock();
|
||||
|
||||
return min + (unsigned int) (((double) (max + 1 - min)) * r / (18446744073709551616.0 + 1.0));
|
||||
// return a random number from the interval [min, max]
|
||||
return (unsigned int) (r % (max - min + 1));
|
||||
}
|
||||
|
|
|
@ -1,13 +1,27 @@
|
|||
#ifndef RNG_SFMT_H
|
||||
#define RNG_SFMT_H
|
||||
|
||||
#include "sfmt/SFMT.h"
|
||||
#include "rng_abstract.h"
|
||||
#include <QMutex>
|
||||
|
||||
/**
|
||||
* This class represents the random number generator.
|
||||
* It uses the SIMD-oriented Fast Mersenne Twister code v1.4.1 from
|
||||
* http://www.math.sci.hiroshima-u.ac.jp/~%20m-mat/MT/SFMT/index.html
|
||||
* To use this RNG, the class needs a sfmt_t structure for the RNG's internal state.
|
||||
* It has to be initialized by sfmt_init_gen_rand() which is done in the constructor.
|
||||
* The function sfmt_genrand_uint64() can then be used to create a 64 bit unsigned int
|
||||
* pseudorandom number. This is done in getNumber().
|
||||
* For more information see the author's website and look at the documentation and
|
||||
* examples that are part of the official downloads.
|
||||
*/
|
||||
|
||||
class RNG_SFMT : public RNG_Abstract {
|
||||
Q_OBJECT
|
||||
private:
|
||||
QMutex mutex;
|
||||
sfmt_t sfmt;
|
||||
public:
|
||||
RNG_SFMT(QObject *parent = 0);
|
||||
unsigned int getNumber(unsigned int min, unsigned int max);
|
||||
|
|
|
@ -1,5 +1,8 @@
|
|||
Copyright (c) 2006,2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
|
||||
University. All rights reserved.
|
||||
University.
|
||||
Copyright (c) 2012 Mutsuo Saito, Makoto Matsumoto, Hiroshima University
|
||||
and The University of Tokyo.
|
||||
All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
|
@ -11,10 +14,10 @@ met:
|
|||
copyright notice, this list of conditions and the following
|
||||
disclaimer in the documentation and/or other materials provided
|
||||
with the distribution.
|
||||
* Neither the name of the Hiroshima University nor the names of
|
||||
its contributors may be used to endorse or promote products
|
||||
derived from this software without specific prior written
|
||||
permission.
|
||||
* Neither the names of Hiroshima University, The University of
|
||||
Tokyo nor the names of its contributors may be used to endorse
|
||||
or promote products derived from this software without specific
|
||||
prior written permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
|
|
164
common/sfmt/SFMT-common.h
Normal file
164
common/sfmt/SFMT-common.h
Normal file
|
@ -0,0 +1,164 @@
|
|||
#pragma once
|
||||
/**
|
||||
* @file SFMT-common.h
|
||||
*
|
||||
* @brief SIMD oriented Fast Mersenne Twister(SFMT) pseudorandom
|
||||
* number generator with jump function. This file includes common functions
|
||||
* used in random number generation and jump.
|
||||
*
|
||||
* @author Mutsuo Saito (Hiroshima University)
|
||||
* @author Makoto Matsumoto (The University of Tokyo)
|
||||
*
|
||||
* Copyright (C) 2006, 2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
|
||||
* University.
|
||||
* Copyright (C) 2012 Mutsuo Saito, Makoto Matsumoto, Hiroshima
|
||||
* University and The University of Tokyo.
|
||||
* All rights reserved.
|
||||
*
|
||||
* The 3-clause BSD License is applied to this software, see
|
||||
* LICENSE.txt
|
||||
*/
|
||||
#ifndef SFMT_COMMON_H
|
||||
#define SFMT_COMMON_H
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#include "SFMT.h"
|
||||
|
||||
inline static void do_recursion(w128_t * r, w128_t * a, w128_t * b,
|
||||
w128_t * c, w128_t * d);
|
||||
|
||||
inline static void rshift128(w128_t *out, w128_t const *in, int shift);
|
||||
inline static void lshift128(w128_t *out, w128_t const *in, int shift);
|
||||
|
||||
/**
|
||||
* This function simulates SIMD 128-bit right shift by the standard C.
|
||||
* The 128-bit integer given in in is shifted by (shift * 8) bits.
|
||||
* This function simulates the LITTLE ENDIAN SIMD.
|
||||
* @param out the output of this function
|
||||
* @param in the 128-bit data to be shifted
|
||||
* @param shift the shift value
|
||||
*/
|
||||
#ifdef ONLY64
|
||||
inline static void rshift128(w128_t *out, w128_t const *in, int shift) {
|
||||
uint64_t th, tl, oh, ol;
|
||||
|
||||
th = ((uint64_t)in->u[2] << 32) | ((uint64_t)in->u[3]);
|
||||
tl = ((uint64_t)in->u[0] << 32) | ((uint64_t)in->u[1]);
|
||||
|
||||
oh = th >> (shift * 8);
|
||||
ol = tl >> (shift * 8);
|
||||
ol |= th << (64 - shift * 8);
|
||||
out->u[0] = (uint32_t)(ol >> 32);
|
||||
out->u[1] = (uint32_t)ol;
|
||||
out->u[2] = (uint32_t)(oh >> 32);
|
||||
out->u[3] = (uint32_t)oh;
|
||||
}
|
||||
#else
|
||||
inline static void rshift128(w128_t *out, w128_t const *in, int shift)
|
||||
{
|
||||
uint64_t th, tl, oh, ol;
|
||||
|
||||
th = ((uint64_t)in->u[3] << 32) | ((uint64_t)in->u[2]);
|
||||
tl = ((uint64_t)in->u[1] << 32) | ((uint64_t)in->u[0]);
|
||||
|
||||
oh = th >> (shift * 8);
|
||||
ol = tl >> (shift * 8);
|
||||
ol |= th << (64 - shift * 8);
|
||||
out->u[1] = (uint32_t)(ol >> 32);
|
||||
out->u[0] = (uint32_t)ol;
|
||||
out->u[3] = (uint32_t)(oh >> 32);
|
||||
out->u[2] = (uint32_t)oh;
|
||||
}
|
||||
#endif
|
||||
/**
|
||||
* This function simulates SIMD 128-bit left shift by the standard C.
|
||||
* The 128-bit integer given in in is shifted by (shift * 8) bits.
|
||||
* This function simulates the LITTLE ENDIAN SIMD.
|
||||
* @param out the output of this function
|
||||
* @param in the 128-bit data to be shifted
|
||||
* @param shift the shift value
|
||||
*/
|
||||
#ifdef ONLY64
|
||||
inline static void lshift128(w128_t *out, w128_t const *in, int shift) {
|
||||
uint64_t th, tl, oh, ol;
|
||||
|
||||
th = ((uint64_t)in->u[2] << 32) | ((uint64_t)in->u[3]);
|
||||
tl = ((uint64_t)in->u[0] << 32) | ((uint64_t)in->u[1]);
|
||||
|
||||
oh = th << (shift * 8);
|
||||
ol = tl << (shift * 8);
|
||||
oh |= tl >> (64 - shift * 8);
|
||||
out->u[0] = (uint32_t)(ol >> 32);
|
||||
out->u[1] = (uint32_t)ol;
|
||||
out->u[2] = (uint32_t)(oh >> 32);
|
||||
out->u[3] = (uint32_t)oh;
|
||||
}
|
||||
#else
|
||||
inline static void lshift128(w128_t *out, w128_t const *in, int shift)
|
||||
{
|
||||
uint64_t th, tl, oh, ol;
|
||||
|
||||
th = ((uint64_t)in->u[3] << 32) | ((uint64_t)in->u[2]);
|
||||
tl = ((uint64_t)in->u[1] << 32) | ((uint64_t)in->u[0]);
|
||||
|
||||
oh = th << (shift * 8);
|
||||
ol = tl << (shift * 8);
|
||||
oh |= tl >> (64 - shift * 8);
|
||||
out->u[1] = (uint32_t)(ol >> 32);
|
||||
out->u[0] = (uint32_t)ol;
|
||||
out->u[3] = (uint32_t)(oh >> 32);
|
||||
out->u[2] = (uint32_t)oh;
|
||||
}
|
||||
#endif
|
||||
/**
|
||||
* This function represents the recursion formula.
|
||||
* @param r output
|
||||
* @param a a 128-bit part of the internal state array
|
||||
* @param b a 128-bit part of the internal state array
|
||||
* @param c a 128-bit part of the internal state array
|
||||
* @param d a 128-bit part of the internal state array
|
||||
*/
|
||||
#ifdef ONLY64
|
||||
inline static void do_recursion(w128_t *r, w128_t *a, w128_t *b, w128_t *c,
|
||||
w128_t *d) {
|
||||
w128_t x;
|
||||
w128_t y;
|
||||
|
||||
lshift128(&x, a, SFMT_SL2);
|
||||
rshift128(&y, c, SFMT_SR2);
|
||||
r->u[0] = a->u[0] ^ x.u[0] ^ ((b->u[0] >> SFMT_SR1) & SFMT_MSK2) ^ y.u[0]
|
||||
^ (d->u[0] << SFMT_SL1);
|
||||
r->u[1] = a->u[1] ^ x.u[1] ^ ((b->u[1] >> SFMT_SR1) & SFMT_MSK1) ^ y.u[1]
|
||||
^ (d->u[1] << SFMT_SL1);
|
||||
r->u[2] = a->u[2] ^ x.u[2] ^ ((b->u[2] >> SFMT_SR1) & SFMT_MSK4) ^ y.u[2]
|
||||
^ (d->u[2] << SFMT_SL1);
|
||||
r->u[3] = a->u[3] ^ x.u[3] ^ ((b->u[3] >> SFMT_SR1) & SFMT_MSK3) ^ y.u[3]
|
||||
^ (d->u[3] << SFMT_SL1);
|
||||
}
|
||||
#else
|
||||
inline static void do_recursion(w128_t *r, w128_t *a, w128_t *b,
|
||||
w128_t *c, w128_t *d)
|
||||
{
|
||||
w128_t x;
|
||||
w128_t y;
|
||||
|
||||
lshift128(&x, a, SFMT_SL2);
|
||||
rshift128(&y, c, SFMT_SR2);
|
||||
r->u[0] = a->u[0] ^ x.u[0] ^ ((b->u[0] >> SFMT_SR1) & SFMT_MSK1)
|
||||
^ y.u[0] ^ (d->u[0] << SFMT_SL1);
|
||||
r->u[1] = a->u[1] ^ x.u[1] ^ ((b->u[1] >> SFMT_SR1) & SFMT_MSK2)
|
||||
^ y.u[1] ^ (d->u[1] << SFMT_SL1);
|
||||
r->u[2] = a->u[2] ^ x.u[2] ^ ((b->u[2] >> SFMT_SR1) & SFMT_MSK3)
|
||||
^ y.u[2] ^ (d->u[2] << SFMT_SL1);
|
||||
r->u[3] = a->u[3] ^ x.u[3] ^ ((b->u[3] >> SFMT_SR1) & SFMT_MSK4)
|
||||
^ y.u[3] ^ (d->u[3] << SFMT_SL1);
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
|
@ -1,95 +1,96 @@
|
|||
#pragma once
|
||||
#ifndef SFMT_PARAMS_H
|
||||
#define SFMT_PARAMS_H
|
||||
|
||||
#if !defined(MEXP)
|
||||
#ifdef __GNUC__
|
||||
#warning "MEXP is not defined. I assume MEXP is 19937."
|
||||
#if !defined(SFMT_MEXP)
|
||||
#if defined(__GNUC__) && !defined(__ICC)
|
||||
#warning "SFMT_MEXP is not defined. I assume MEXP is 19937."
|
||||
#endif
|
||||
#define MEXP 19937
|
||||
#define SFMT_MEXP 19937
|
||||
#endif
|
||||
/*-----------------
|
||||
BASIC DEFINITIONS
|
||||
-----------------*/
|
||||
/** Mersenne Exponent. The period of the sequence
|
||||
* is a multiple of 2^MEXP-1.
|
||||
* #define MEXP 19937 */
|
||||
* #define SFMT_MEXP 19937 */
|
||||
/** SFMT generator has an internal state array of 128-bit integers,
|
||||
* and N is its size. */
|
||||
#define N (MEXP / 128 + 1)
|
||||
#define SFMT_N (SFMT_MEXP / 128 + 1)
|
||||
/** N32 is the size of internal state array when regarded as an array
|
||||
* of 32-bit integers.*/
|
||||
#define N32 (N * 4)
|
||||
#define SFMT_N32 (SFMT_N * 4)
|
||||
/** N64 is the size of internal state array when regarded as an array
|
||||
* of 64-bit integers.*/
|
||||
#define N64 (N * 2)
|
||||
#define SFMT_N64 (SFMT_N * 2)
|
||||
|
||||
/*----------------------
|
||||
the parameters of SFMT
|
||||
following definitions are in paramsXXXX.h file.
|
||||
----------------------*/
|
||||
/** the pick up position of the array.
|
||||
#define POS1 122
|
||||
#define SFMT_POS1 122
|
||||
*/
|
||||
|
||||
/** the parameter of shift left as four 32-bit registers.
|
||||
#define SL1 18
|
||||
#define SFMT_SL1 18
|
||||
*/
|
||||
|
||||
/** the parameter of shift left as one 128-bit register.
|
||||
* The 128-bit integer is shifted by (SL2 * 8) bits.
|
||||
#define SL2 1
|
||||
* The 128-bit integer is shifted by (SFMT_SL2 * 8) bits.
|
||||
#define SFMT_SL2 1
|
||||
*/
|
||||
|
||||
/** the parameter of shift right as four 32-bit registers.
|
||||
#define SR1 11
|
||||
#define SFMT_SR1 11
|
||||
*/
|
||||
|
||||
/** the parameter of shift right as one 128-bit register.
|
||||
* The 128-bit integer is shifted by (SL2 * 8) bits.
|
||||
#define SR2 1
|
||||
* The 128-bit integer is shifted by (SFMT_SL2 * 8) bits.
|
||||
#define SFMT_SR21 1
|
||||
*/
|
||||
|
||||
/** A bitmask, used in the recursion. These parameters are introduced
|
||||
* to break symmetry of SIMD.
|
||||
#define MSK1 0xdfffffefU
|
||||
#define MSK2 0xddfecb7fU
|
||||
#define MSK3 0xbffaffffU
|
||||
#define MSK4 0xbffffff6U
|
||||
#define SFMT_MSK1 0xdfffffefU
|
||||
#define SFMT_MSK2 0xddfecb7fU
|
||||
#define SFMT_MSK3 0xbffaffffU
|
||||
#define SFMT_MSK4 0xbffffff6U
|
||||
*/
|
||||
|
||||
/** These definitions are part of a 128-bit period certification vector.
|
||||
#define PARITY1 0x00000001U
|
||||
#define PARITY2 0x00000000U
|
||||
#define PARITY3 0x00000000U
|
||||
#define PARITY4 0xc98e126aU
|
||||
#define SFMT_PARITY1 0x00000001U
|
||||
#define SFMT_PARITY2 0x00000000U
|
||||
#define SFMT_PARITY3 0x00000000U
|
||||
#define SFMT_PARITY4 0xc98e126aU
|
||||
*/
|
||||
|
||||
#if MEXP == 607
|
||||
#if SFMT_MEXP == 607
|
||||
#include "SFMT-params607.h"
|
||||
#elif MEXP == 1279
|
||||
#elif SFMT_MEXP == 1279
|
||||
#include "SFMT-params1279.h"
|
||||
#elif MEXP == 2281
|
||||
#elif SFMT_MEXP == 2281
|
||||
#include "SFMT-params2281.h"
|
||||
#elif MEXP == 4253
|
||||
#elif SFMT_MEXP == 4253
|
||||
#include "SFMT-params4253.h"
|
||||
#elif MEXP == 11213
|
||||
#elif SFMT_MEXP == 11213
|
||||
#include "SFMT-params11213.h"
|
||||
#elif MEXP == 19937
|
||||
#elif SFMT_MEXP == 19937
|
||||
#include "SFMT-params19937.h"
|
||||
#elif MEXP == 44497
|
||||
#elif SFMT_MEXP == 44497
|
||||
#include "SFMT-params44497.h"
|
||||
#elif MEXP == 86243
|
||||
#elif SFMT_MEXP == 86243
|
||||
#include "SFMT-params86243.h"
|
||||
#elif MEXP == 132049
|
||||
#elif SFMT_MEXP == 132049
|
||||
#include "SFMT-params132049.h"
|
||||
#elif MEXP == 216091
|
||||
#elif SFMT_MEXP == 216091
|
||||
#include "SFMT-params216091.h"
|
||||
#else
|
||||
#ifdef __GNUC__
|
||||
#error "MEXP is not valid."
|
||||
#undef MEXP
|
||||
#if defined(__GNUC__) && !defined(__ICC)
|
||||
#error "SFMT_MEXP is not valid."
|
||||
#undef SFMT_MEXP
|
||||
#else
|
||||
#undef MEXP
|
||||
#undef SFMT_MEXP
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
|
|
@ -1,46 +1,50 @@
|
|||
#pragma once
|
||||
#ifndef SFMT_PARAMS19937_H
|
||||
#define SFMT_PARAMS19937_H
|
||||
|
||||
#define POS1 122
|
||||
#define SL1 18
|
||||
#define SL2 1
|
||||
#define SR1 11
|
||||
#define SR2 1
|
||||
#define MSK1 0xdfffffefU
|
||||
#define MSK2 0xddfecb7fU
|
||||
#define MSK3 0xbffaffffU
|
||||
#define MSK4 0xbffffff6U
|
||||
#define PARITY1 0x00000001U
|
||||
#define PARITY2 0x00000000U
|
||||
#define PARITY3 0x00000000U
|
||||
#define PARITY4 0x13c9e684U
|
||||
#define SFMT_POS1 122
|
||||
#define SFMT_SL1 18
|
||||
#define SFMT_SL2 1
|
||||
#define SFMT_SR1 11
|
||||
#define SFMT_SR2 1
|
||||
#define SFMT_MSK1 0xdfffffefU
|
||||
#define SFMT_MSK2 0xddfecb7fU
|
||||
#define SFMT_MSK3 0xbffaffffU
|
||||
#define SFMT_MSK4 0xbffffff6U
|
||||
#define SFMT_PARITY1 0x00000001U
|
||||
#define SFMT_PARITY2 0x00000000U
|
||||
#define SFMT_PARITY3 0x00000000U
|
||||
#define SFMT_PARITY4 0x13c9e684U
|
||||
|
||||
|
||||
/* PARAMETERS FOR ALTIVEC */
|
||||
#if defined(__APPLE__) /* For OSX */
|
||||
#define ALTI_SL1 (vector unsigned int)(SL1, SL1, SL1, SL1)
|
||||
#define ALTI_SR1 (vector unsigned int)(SR1, SR1, SR1, SR1)
|
||||
#define ALTI_MSK (vector unsigned int)(MSK1, MSK2, MSK3, MSK4)
|
||||
#define ALTI_MSK64 \
|
||||
(vector unsigned int)(MSK2, MSK1, MSK4, MSK3)
|
||||
#define ALTI_SL2_PERM \
|
||||
#define SFMT_ALTI_SL1 \
|
||||
(vector unsigned int)(SFMT_SL1, SFMT_SL1, SFMT_SL1, SFMT_SL1)
|
||||
#define SFMT_ALTI_SR1 \
|
||||
(vector unsigned int)(SFMT_SR1, SFMT_SR1, SFMT_SR1, SFMT_SR1)
|
||||
#define SFMT_ALTI_MSK \
|
||||
(vector unsigned int)(SFMT_MSK1, SFMT_MSK2, SFMT_MSK3, SFMT_MSK4)
|
||||
#define SFMT_ALTI_MSK64 \
|
||||
(vector unsigned int)(SFMT_MSK2, SFMT_MSK1, SFMT_MSK4, SFMT_MSK3)
|
||||
#define SFMT_ALTI_SL2_PERM \
|
||||
(vector unsigned char)(1,2,3,23,5,6,7,0,9,10,11,4,13,14,15,8)
|
||||
#define ALTI_SL2_PERM64 \
|
||||
#define SFMT_ALTI_SL2_PERM64 \
|
||||
(vector unsigned char)(1,2,3,4,5,6,7,31,9,10,11,12,13,14,15,0)
|
||||
#define ALTI_SR2_PERM \
|
||||
#define SFMT_ALTI_SR2_PERM \
|
||||
(vector unsigned char)(7,0,1,2,11,4,5,6,15,8,9,10,17,12,13,14)
|
||||
#define ALTI_SR2_PERM64 \
|
||||
#define SFMT_ALTI_SR2_PERM64 \
|
||||
(vector unsigned char)(15,0,1,2,3,4,5,6,17,8,9,10,11,12,13,14)
|
||||
#else /* For OTHER OSs(Linux?) */
|
||||
#define ALTI_SL1 {SL1, SL1, SL1, SL1}
|
||||
#define ALTI_SR1 {SR1, SR1, SR1, SR1}
|
||||
#define ALTI_MSK {MSK1, MSK2, MSK3, MSK4}
|
||||
#define ALTI_MSK64 {MSK2, MSK1, MSK4, MSK3}
|
||||
#define ALTI_SL2_PERM {1,2,3,23,5,6,7,0,9,10,11,4,13,14,15,8}
|
||||
#define ALTI_SL2_PERM64 {1,2,3,4,5,6,7,31,9,10,11,12,13,14,15,0}
|
||||
#define ALTI_SR2_PERM {7,0,1,2,11,4,5,6,15,8,9,10,17,12,13,14}
|
||||
#define ALTI_SR2_PERM64 {15,0,1,2,3,4,5,6,17,8,9,10,11,12,13,14}
|
||||
#define SFMT_ALTI_SL1 {SFMT_SL1, SFMT_SL1, SFMT_SL1, SFMT_SL1}
|
||||
#define SFMT_ALTI_SR1 {SFMT_SR1, SFMT_SR1, SFMT_SR1, SFMT_SR1}
|
||||
#define SFMT_ALTI_MSK {SFMT_MSK1, SFMT_MSK2, SFMT_MSK3, SFMT_MSK4}
|
||||
#define SFMT_ALTI_MSK64 {SFMT_MSK2, SFMT_MSK1, SFMT_MSK4, SFMT_MSK3}
|
||||
#define SFMT_ALTI_SL2_PERM {1,2,3,23,5,6,7,0,9,10,11,4,13,14,15,8}
|
||||
#define SFMT_ALTI_SL2_PERM64 {1,2,3,4,5,6,7,31,9,10,11,12,13,14,15,0}
|
||||
#define SFMT_ALTI_SR2_PERM {7,0,1,2,11,4,5,6,15,8,9,10,17,12,13,14}
|
||||
#define SFMT_ALTI_SR2_PERM64 {15,0,1,2,3,4,5,6,17,8,9,10,11,12,13,14}
|
||||
#endif /* For OSX */
|
||||
#define IDSTR "SFMT-19937:122-18-1-11-1:dfffffef-ddfecb7f-bffaffff-bffffff6"
|
||||
#define SFMT_IDSTR "SFMT-19937:122-18-1-11-1:dfffffef-ddfecb7f-bffaffff-bffffff6"
|
||||
|
||||
#endif /* SFMT_PARAMS19937_H */
|
||||
|
|
|
@ -5,15 +5,27 @@
|
|||
* @author Mutsuo Saito (Hiroshima University)
|
||||
* @author Makoto Matsumoto (Hiroshima University)
|
||||
*
|
||||
* Copyright (C) 2006,2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
|
||||
* University. All rights reserved.
|
||||
* Copyright (C) 2006, 2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
|
||||
* University.
|
||||
* Copyright (C) 2012 Mutsuo Saito, Makoto Matsumoto, Hiroshima
|
||||
* University and The University of Tokyo.
|
||||
* Copyright (C) 2013 Mutsuo Saito, Makoto Matsumoto and Hiroshima
|
||||
* University.
|
||||
* All rights reserved.
|
||||
*
|
||||
* The new BSD License is applied to this software, see LICENSE.txt
|
||||
* The 3-clause BSD License is applied to this software, see
|
||||
* LICENSE.txt
|
||||
*/
|
||||
|
||||
#if defined(__cplusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#include <string.h>
|
||||
#include <assert.h>
|
||||
#include "SFMT.h"
|
||||
#include "SFMT-params.h"
|
||||
#include "SFMT-common.h"
|
||||
|
||||
#if defined(__BIG_ENDIAN__) && !defined(__amd64) && !defined(BIG_ENDIAN64)
|
||||
#define BIG_ENDIAN64 1
|
||||
|
@ -27,74 +39,20 @@
|
|||
#endif
|
||||
#undef ONLY64
|
||||
#endif
|
||||
/*------------------------------------------------------
|
||||
128-bit SIMD data type for Altivec, SSE2 or standard C
|
||||
------------------------------------------------------*/
|
||||
#if defined(HAVE_ALTIVEC)
|
||||
#if !defined(__APPLE__)
|
||||
#include <altivec.h>
|
||||
#endif
|
||||
/** 128-bit data structure */
|
||||
union W128_T {
|
||||
vector unsigned int s;
|
||||
uint32_t u[4];
|
||||
};
|
||||
/** 128-bit data type */
|
||||
typedef union W128_T w128_t;
|
||||
|
||||
#elif defined(HAVE_SSE2)
|
||||
#include <emmintrin.h>
|
||||
|
||||
/** 128-bit data structure */
|
||||
union W128_T {
|
||||
__m128i si;
|
||||
uint32_t u[4];
|
||||
};
|
||||
/** 128-bit data type */
|
||||
typedef union W128_T w128_t;
|
||||
|
||||
#else
|
||||
|
||||
/** 128-bit data structure */
|
||||
struct W128_T {
|
||||
uint32_t u[4];
|
||||
};
|
||||
/** 128-bit data type */
|
||||
typedef struct W128_T w128_t;
|
||||
|
||||
#endif
|
||||
|
||||
/*--------------------------------------
|
||||
FILE GLOBAL VARIABLES
|
||||
internal state, index counter and flag
|
||||
--------------------------------------*/
|
||||
/** the 128-bit internal state array */
|
||||
static w128_t sfmt[N];
|
||||
/** the 32bit integer pointer to the 128-bit internal state array */
|
||||
static uint32_t *psfmt32 = &sfmt[0].u[0];
|
||||
#if !defined(BIG_ENDIAN64) || defined(ONLY64)
|
||||
/** the 64bit integer pointer to the 128-bit internal state array */
|
||||
static uint64_t *psfmt64 = (uint64_t *)&sfmt[0].u[0];
|
||||
#endif
|
||||
/** index counter to the 32-bit internal state array */
|
||||
static int idx;
|
||||
/** a flag: it is 0 if and only if the internal state is not yet
|
||||
* initialized. */
|
||||
static int initialized = 0;
|
||||
/** a parity check vector which certificate the period of 2^{MEXP} */
|
||||
static uint32_t parity[4] = {PARITY1, PARITY2, PARITY3, PARITY4};
|
||||
|
||||
/**
|
||||
* parameters used by sse2.
|
||||
*/
|
||||
static const w128_t sse2_param_mask = {{SFMT_MSK1, SFMT_MSK2,
|
||||
SFMT_MSK3, SFMT_MSK4}};
|
||||
/*----------------
|
||||
STATIC FUNCTIONS
|
||||
----------------*/
|
||||
inline static int idxof(int i);
|
||||
inline static void rshift128(w128_t *out, w128_t const *in, int shift);
|
||||
inline static void lshift128(w128_t *out, w128_t const *in, int shift);
|
||||
inline static void gen_rand_all(void);
|
||||
inline static void gen_rand_array(w128_t *array, int size);
|
||||
inline static void gen_rand_array(sfmt_t * sfmt, w128_t *array, int size);
|
||||
inline static uint32_t func1(uint32_t x);
|
||||
inline static uint32_t func2(uint32_t x);
|
||||
static void period_certification(void);
|
||||
static void period_certification(sfmt_t * sfmt);
|
||||
#if defined(BIG_ENDIAN64) && !defined(ONLY64)
|
||||
inline static void swap(w128_t *array, int size);
|
||||
#endif
|
||||
|
@ -102,7 +60,11 @@ inline static void swap(w128_t *array, int size);
|
|||
#if defined(HAVE_ALTIVEC)
|
||||
#include "SFMT-alti.h"
|
||||
#elif defined(HAVE_SSE2)
|
||||
#if defined(_MSC_VER)
|
||||
#include "SFMT-sse2-msc.h"
|
||||
#else
|
||||
#include "SFMT-sse2.h"
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/**
|
||||
|
@ -118,190 +80,48 @@ inline static int idxof(int i) {
|
|||
return i;
|
||||
}
|
||||
#endif
|
||||
/**
|
||||
* This function simulates SIMD 128-bit right shift by the standard C.
|
||||
* The 128-bit integer given in in is shifted by (shift * 8) bits.
|
||||
* This function simulates the LITTLE ENDIAN SIMD.
|
||||
* @param out the output of this function
|
||||
* @param in the 128-bit data to be shifted
|
||||
* @param shift the shift value
|
||||
*/
|
||||
#ifdef ONLY64
|
||||
inline static void rshift128(w128_t *out, w128_t const *in, int shift) {
|
||||
uint64_t th, tl, oh, ol;
|
||||
|
||||
th = ((uint64_t)in->u[2] << 32) | ((uint64_t)in->u[3]);
|
||||
tl = ((uint64_t)in->u[0] << 32) | ((uint64_t)in->u[1]);
|
||||
|
||||
oh = th >> (shift * 8);
|
||||
ol = tl >> (shift * 8);
|
||||
ol |= th << (64 - shift * 8);
|
||||
out->u[0] = (uint32_t)(ol >> 32);
|
||||
out->u[1] = (uint32_t)ol;
|
||||
out->u[2] = (uint32_t)(oh >> 32);
|
||||
out->u[3] = (uint32_t)oh;
|
||||
}
|
||||
#else
|
||||
inline static void rshift128(w128_t *out, w128_t const *in, int shift) {
|
||||
uint64_t th, tl, oh, ol;
|
||||
|
||||
th = ((uint64_t)in->u[3] << 32) | ((uint64_t)in->u[2]);
|
||||
tl = ((uint64_t)in->u[1] << 32) | ((uint64_t)in->u[0]);
|
||||
|
||||
oh = th >> (shift * 8);
|
||||
ol = tl >> (shift * 8);
|
||||
ol |= th << (64 - shift * 8);
|
||||
out->u[1] = (uint32_t)(ol >> 32);
|
||||
out->u[0] = (uint32_t)ol;
|
||||
out->u[3] = (uint32_t)(oh >> 32);
|
||||
out->u[2] = (uint32_t)oh;
|
||||
}
|
||||
#endif
|
||||
/**
|
||||
* This function simulates SIMD 128-bit left shift by the standard C.
|
||||
* The 128-bit integer given in in is shifted by (shift * 8) bits.
|
||||
* This function simulates the LITTLE ENDIAN SIMD.
|
||||
* @param out the output of this function
|
||||
* @param in the 128-bit data to be shifted
|
||||
* @param shift the shift value
|
||||
*/
|
||||
#ifdef ONLY64
|
||||
inline static void lshift128(w128_t *out, w128_t const *in, int shift) {
|
||||
uint64_t th, tl, oh, ol;
|
||||
|
||||
th = ((uint64_t)in->u[2] << 32) | ((uint64_t)in->u[3]);
|
||||
tl = ((uint64_t)in->u[0] << 32) | ((uint64_t)in->u[1]);
|
||||
|
||||
oh = th << (shift * 8);
|
||||
ol = tl << (shift * 8);
|
||||
oh |= tl >> (64 - shift * 8);
|
||||
out->u[0] = (uint32_t)(ol >> 32);
|
||||
out->u[1] = (uint32_t)ol;
|
||||
out->u[2] = (uint32_t)(oh >> 32);
|
||||
out->u[3] = (uint32_t)oh;
|
||||
}
|
||||
#else
|
||||
inline static void lshift128(w128_t *out, w128_t const *in, int shift) {
|
||||
uint64_t th, tl, oh, ol;
|
||||
|
||||
th = ((uint64_t)in->u[3] << 32) | ((uint64_t)in->u[2]);
|
||||
tl = ((uint64_t)in->u[1] << 32) | ((uint64_t)in->u[0]);
|
||||
|
||||
oh = th << (shift * 8);
|
||||
ol = tl << (shift * 8);
|
||||
oh |= tl >> (64 - shift * 8);
|
||||
out->u[1] = (uint32_t)(ol >> 32);
|
||||
out->u[0] = (uint32_t)ol;
|
||||
out->u[3] = (uint32_t)(oh >> 32);
|
||||
out->u[2] = (uint32_t)oh;
|
||||
}
|
||||
#endif
|
||||
|
||||
/**
|
||||
* This function represents the recursion formula.
|
||||
* @param r output
|
||||
* @param a a 128-bit part of the internal state array
|
||||
* @param b a 128-bit part of the internal state array
|
||||
* @param c a 128-bit part of the internal state array
|
||||
* @param d a 128-bit part of the internal state array
|
||||
*/
|
||||
#if (!defined(HAVE_ALTIVEC)) && (!defined(HAVE_SSE2))
|
||||
#ifdef ONLY64
|
||||
inline static void do_recursion(w128_t *r, w128_t *a, w128_t *b, w128_t *c,
|
||||
w128_t *d) {
|
||||
w128_t x;
|
||||
w128_t y;
|
||||
|
||||
lshift128(&x, a, SL2);
|
||||
rshift128(&y, c, SR2);
|
||||
r->u[0] = a->u[0] ^ x.u[0] ^ ((b->u[0] >> SR1) & MSK2) ^ y.u[0]
|
||||
^ (d->u[0] << SL1);
|
||||
r->u[1] = a->u[1] ^ x.u[1] ^ ((b->u[1] >> SR1) & MSK1) ^ y.u[1]
|
||||
^ (d->u[1] << SL1);
|
||||
r->u[2] = a->u[2] ^ x.u[2] ^ ((b->u[2] >> SR1) & MSK4) ^ y.u[2]
|
||||
^ (d->u[2] << SL1);
|
||||
r->u[3] = a->u[3] ^ x.u[3] ^ ((b->u[3] >> SR1) & MSK3) ^ y.u[3]
|
||||
^ (d->u[3] << SL1);
|
||||
}
|
||||
#else
|
||||
inline static void do_recursion(w128_t *r, w128_t *a, w128_t *b, w128_t *c,
|
||||
w128_t *d) {
|
||||
w128_t x;
|
||||
w128_t y;
|
||||
|
||||
lshift128(&x, a, SL2);
|
||||
rshift128(&y, c, SR2);
|
||||
r->u[0] = a->u[0] ^ x.u[0] ^ ((b->u[0] >> SR1) & MSK1) ^ y.u[0]
|
||||
^ (d->u[0] << SL1);
|
||||
r->u[1] = a->u[1] ^ x.u[1] ^ ((b->u[1] >> SR1) & MSK2) ^ y.u[1]
|
||||
^ (d->u[1] << SL1);
|
||||
r->u[2] = a->u[2] ^ x.u[2] ^ ((b->u[2] >> SR1) & MSK3) ^ y.u[2]
|
||||
^ (d->u[2] << SL1);
|
||||
r->u[3] = a->u[3] ^ x.u[3] ^ ((b->u[3] >> SR1) & MSK4) ^ y.u[3]
|
||||
^ (d->u[3] << SL1);
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if (!defined(HAVE_ALTIVEC)) && (!defined(HAVE_SSE2))
|
||||
/**
|
||||
* This function fills the internal state array with pseudorandom
|
||||
* integers.
|
||||
*/
|
||||
inline static void gen_rand_all(void) {
|
||||
int i;
|
||||
w128_t *r1, *r2;
|
||||
|
||||
r1 = &sfmt[N - 2];
|
||||
r2 = &sfmt[N - 1];
|
||||
for (i = 0; i < N - POS1; i++) {
|
||||
do_recursion(&sfmt[i], &sfmt[i], &sfmt[i + POS1], r1, r2);
|
||||
r1 = r2;
|
||||
r2 = &sfmt[i];
|
||||
}
|
||||
for (; i < N; i++) {
|
||||
do_recursion(&sfmt[i], &sfmt[i], &sfmt[i + POS1 - N], r1, r2);
|
||||
r1 = r2;
|
||||
r2 = &sfmt[i];
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* This function fills the user-specified array with pseudorandom
|
||||
* integers.
|
||||
*
|
||||
* @param sfmt SFMT internal state
|
||||
* @param array an 128-bit array to be filled by pseudorandom numbers.
|
||||
* @param size number of 128-bit pseudorandom numbers to be generated.
|
||||
*/
|
||||
inline static void gen_rand_array(w128_t *array, int size) {
|
||||
inline static void gen_rand_array(sfmt_t * sfmt, w128_t *array, int size) {
|
||||
int i, j;
|
||||
w128_t *r1, *r2;
|
||||
|
||||
r1 = &sfmt[N - 2];
|
||||
r2 = &sfmt[N - 1];
|
||||
for (i = 0; i < N - POS1; i++) {
|
||||
do_recursion(&array[i], &sfmt[i], &sfmt[i + POS1], r1, r2);
|
||||
r1 = &sfmt->state[SFMT_N - 2];
|
||||
r2 = &sfmt->state[SFMT_N - 1];
|
||||
for (i = 0; i < SFMT_N - SFMT_POS1; i++) {
|
||||
do_recursion(&array[i], &sfmt->state[i], &sfmt->state[i + SFMT_POS1], r1, r2);
|
||||
r1 = r2;
|
||||
r2 = &array[i];
|
||||
}
|
||||
for (; i < N; i++) {
|
||||
do_recursion(&array[i], &sfmt[i], &array[i + POS1 - N], r1, r2);
|
||||
for (; i < SFMT_N; i++) {
|
||||
do_recursion(&array[i], &sfmt->state[i],
|
||||
&array[i + SFMT_POS1 - SFMT_N], r1, r2);
|
||||
r1 = r2;
|
||||
r2 = &array[i];
|
||||
}
|
||||
for (; i < size - N; i++) {
|
||||
do_recursion(&array[i], &array[i - N], &array[i + POS1 - N], r1, r2);
|
||||
for (; i < size - SFMT_N; i++) {
|
||||
do_recursion(&array[i], &array[i - SFMT_N],
|
||||
&array[i + SFMT_POS1 - SFMT_N], r1, r2);
|
||||
r1 = r2;
|
||||
r2 = &array[i];
|
||||
}
|
||||
for (j = 0; j < 2 * N - size; j++) {
|
||||
sfmt[j] = array[j + size - N];
|
||||
for (j = 0; j < 2 * SFMT_N - size; j++) {
|
||||
sfmt->state[j] = array[j + size - SFMT_N];
|
||||
}
|
||||
for (; i < size; i++, j++) {
|
||||
do_recursion(&array[i], &array[i - N], &array[i + POS1 - N], r1, r2);
|
||||
do_recursion(&array[i], &array[i - SFMT_N],
|
||||
&array[i + SFMT_POS1 - SFMT_N], r1, r2);
|
||||
r1 = r2;
|
||||
r2 = &array[i];
|
||||
sfmt[j] = array[i];
|
||||
sfmt->state[j] = array[i];
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
@ -343,11 +163,15 @@ static uint32_t func2(uint32_t x) {
|
|||
|
||||
/**
|
||||
* This function certificate the period of 2^{MEXP}
|
||||
* @param sfmt SFMT internal state
|
||||
*/
|
||||
static void period_certification(void) {
|
||||
static void period_certification(sfmt_t * sfmt) {
|
||||
int inner = 0;
|
||||
int i, j;
|
||||
uint32_t work;
|
||||
uint32_t *psfmt32 = &sfmt->state[0].u[0];
|
||||
const uint32_t parity[4] = {SFMT_PARITY1, SFMT_PARITY2,
|
||||
SFMT_PARITY3, SFMT_PARITY4};
|
||||
|
||||
for (i = 0; i < 4; i++)
|
||||
inner ^= psfmt32[idxof(i)] & parity[i];
|
||||
|
@ -374,83 +198,66 @@ static void period_certification(void) {
|
|||
/*----------------
|
||||
PUBLIC FUNCTIONS
|
||||
----------------*/
|
||||
#define UNUSED_VARIABLE(x) (void)(x)
|
||||
/**
|
||||
* This function returns the identification string.
|
||||
* The string shows the word size, the Mersenne exponent,
|
||||
* and all parameters of this generator.
|
||||
* @param sfmt SFMT internal state
|
||||
*/
|
||||
const char *get_idstring(void) {
|
||||
return IDSTR;
|
||||
const char *sfmt_get_idstring(sfmt_t * sfmt) {
|
||||
UNUSED_VARIABLE(sfmt);
|
||||
return SFMT_IDSTR;
|
||||
}
|
||||
|
||||
/**
|
||||
* This function returns the minimum size of array used for \b
|
||||
* fill_array32() function.
|
||||
* @param sfmt SFMT internal state
|
||||
* @return minimum size of array used for fill_array32() function.
|
||||
*/
|
||||
int get_min_array_size32(void) {
|
||||
return N32;
|
||||
int sfmt_get_min_array_size32(sfmt_t * sfmt) {
|
||||
UNUSED_VARIABLE(sfmt);
|
||||
return SFMT_N32;
|
||||
}
|
||||
|
||||
/**
|
||||
* This function returns the minimum size of array used for \b
|
||||
* fill_array64() function.
|
||||
* @param sfmt SFMT internal state
|
||||
* @return minimum size of array used for fill_array64() function.
|
||||
*/
|
||||
int get_min_array_size64(void) {
|
||||
return N64;
|
||||
int sfmt_get_min_array_size64(sfmt_t * sfmt) {
|
||||
UNUSED_VARIABLE(sfmt);
|
||||
return SFMT_N64;
|
||||
}
|
||||
|
||||
#ifndef ONLY64
|
||||
#if !defined(HAVE_SSE2) && !defined(HAVE_ALTIVEC)
|
||||
/**
|
||||
* This function generates and returns 32-bit pseudorandom number.
|
||||
* init_gen_rand or init_by_array must be called before this function.
|
||||
* @return 32-bit pseudorandom number
|
||||
* This function fills the internal state array with pseudorandom
|
||||
* integers.
|
||||
* @param sfmt SFMT internal state
|
||||
*/
|
||||
uint32_t gen_rand32(void) {
|
||||
uint32_t r;
|
||||
void sfmt_gen_rand_all(sfmt_t * sfmt) {
|
||||
int i;
|
||||
w128_t *r1, *r2;
|
||||
|
||||
assert(initialized);
|
||||
if (idx >= N32) {
|
||||
gen_rand_all();
|
||||
idx = 0;
|
||||
r1 = &sfmt->state[SFMT_N - 2];
|
||||
r2 = &sfmt->state[SFMT_N - 1];
|
||||
for (i = 0; i < SFMT_N - SFMT_POS1; i++) {
|
||||
do_recursion(&sfmt->state[i], &sfmt->state[i],
|
||||
&sfmt->state[i + SFMT_POS1], r1, r2);
|
||||
r1 = r2;
|
||||
r2 = &sfmt->state[i];
|
||||
}
|
||||
for (; i < SFMT_N; i++) {
|
||||
do_recursion(&sfmt->state[i], &sfmt->state[i],
|
||||
&sfmt->state[i + SFMT_POS1 - SFMT_N], r1, r2);
|
||||
r1 = r2;
|
||||
r2 = &sfmt->state[i];
|
||||
}
|
||||
r = psfmt32[idx++];
|
||||
return r;
|
||||
}
|
||||
#endif
|
||||
/**
|
||||
* This function generates and returns 64-bit pseudorandom number.
|
||||
* init_gen_rand or init_by_array must be called before this function.
|
||||
* The function gen_rand64 should not be called after gen_rand32,
|
||||
* unless an initialization is again executed.
|
||||
* @return 64-bit pseudorandom number
|
||||
*/
|
||||
uint64_t gen_rand64(void) {
|
||||
#if defined(BIG_ENDIAN64) && !defined(ONLY64)
|
||||
uint32_t r1, r2;
|
||||
#else
|
||||
uint64_t r;
|
||||
#endif
|
||||
|
||||
assert(initialized);
|
||||
assert(idx % 2 == 0);
|
||||
|
||||
if (idx >= N32) {
|
||||
gen_rand_all();
|
||||
idx = 0;
|
||||
}
|
||||
#if defined(BIG_ENDIAN64) && !defined(ONLY64)
|
||||
r1 = psfmt32[idx];
|
||||
r2 = psfmt32[idx + 1];
|
||||
idx += 2;
|
||||
return ((uint64_t)r2 << 32) | r1;
|
||||
#else
|
||||
r = psfmt64[idx / 2];
|
||||
idx += 2;
|
||||
return r;
|
||||
#endif
|
||||
}
|
||||
|
||||
#ifndef ONLY64
|
||||
/**
|
||||
|
@ -464,6 +271,7 @@ uint64_t gen_rand64(void) {
|
|||
* before the first call of this function. This function can not be
|
||||
* used after calling gen_rand function, without initialization.
|
||||
*
|
||||
* @param sfmt SFMT internal state
|
||||
* @param array an array where pseudorandom 32-bit integers are filled
|
||||
* by this function. The pointer to the array must be \b "aligned"
|
||||
* (namely, must be a multiple of 16) in the SIMD version, since it
|
||||
|
@ -478,14 +286,13 @@ uint64_t gen_rand64(void) {
|
|||
* memory. Mac OSX doesn't have these functions, but \b malloc of OSX
|
||||
* returns the pointer to the aligned memory block.
|
||||
*/
|
||||
void fill_array32(uint32_t *array, int size) {
|
||||
assert(initialized);
|
||||
assert(idx == N32);
|
||||
void sfmt_fill_array32(sfmt_t * sfmt, uint32_t *array, int size) {
|
||||
assert(sfmt->idx == SFMT_N32);
|
||||
assert(size % 4 == 0);
|
||||
assert(size >= N32);
|
||||
assert(size >= SFMT_N32);
|
||||
|
||||
gen_rand_array((w128_t *)array, size / 4);
|
||||
idx = N32;
|
||||
gen_rand_array(sfmt, (w128_t *)array, size / 4);
|
||||
sfmt->idx = SFMT_N32;
|
||||
}
|
||||
#endif
|
||||
|
||||
|
@ -496,6 +303,7 @@ void fill_array32(uint32_t *array, int size) {
|
|||
* multiple of two. The generation by this function is much faster
|
||||
* than the following gen_rand function.
|
||||
*
|
||||
* @param sfmt SFMT internal state
|
||||
* For initialization, init_gen_rand or init_by_array must be called
|
||||
* before the first call of this function. This function can not be
|
||||
* used after calling gen_rand function, without initialization.
|
||||
|
@ -514,14 +322,13 @@ void fill_array32(uint32_t *array, int size) {
|
|||
* memory. Mac OSX doesn't have these functions, but \b malloc of OSX
|
||||
* returns the pointer to the aligned memory block.
|
||||
*/
|
||||
void fill_array64(uint64_t *array, int size) {
|
||||
assert(initialized);
|
||||
assert(idx == N32);
|
||||
void sfmt_fill_array64(sfmt_t * sfmt, uint64_t *array, int size) {
|
||||
assert(sfmt->idx == SFMT_N32);
|
||||
assert(size % 2 == 0);
|
||||
assert(size >= N64);
|
||||
assert(size >= SFMT_N64);
|
||||
|
||||
gen_rand_array((w128_t *)array, size / 2);
|
||||
idx = N32;
|
||||
gen_rand_array(sfmt, (w128_t *)array, size / 2);
|
||||
sfmt->idx = SFMT_N32;
|
||||
|
||||
#if defined(BIG_ENDIAN64) && !defined(ONLY64)
|
||||
swap((w128_t *)array, size /2);
|
||||
|
@ -532,34 +339,38 @@ void fill_array64(uint64_t *array, int size) {
|
|||
* This function initializes the internal state array with a 32-bit
|
||||
* integer seed.
|
||||
*
|
||||
* @param sfmt SFMT internal state
|
||||
* @param seed a 32-bit integer used as the seed.
|
||||
*/
|
||||
void init_gen_rand(uint32_t seed) {
|
||||
void sfmt_init_gen_rand(sfmt_t * sfmt, uint32_t seed) {
|
||||
int i;
|
||||
|
||||
uint32_t *psfmt32 = &sfmt->state[0].u[0];
|
||||
|
||||
psfmt32[idxof(0)] = seed;
|
||||
for (i = 1; i < N32; i++) {
|
||||
for (i = 1; i < SFMT_N32; i++) {
|
||||
psfmt32[idxof(i)] = 1812433253UL * (psfmt32[idxof(i - 1)]
|
||||
^ (psfmt32[idxof(i - 1)] >> 30))
|
||||
+ i;
|
||||
}
|
||||
idx = N32;
|
||||
period_certification();
|
||||
initialized = 1;
|
||||
sfmt->idx = SFMT_N32;
|
||||
period_certification(sfmt);
|
||||
}
|
||||
|
||||
/**
|
||||
* This function initializes the internal state array,
|
||||
* with an array of 32-bit integers used as the seeds
|
||||
* @param sfmt SFMT internal state
|
||||
* @param init_key the array of 32-bit integers, used as a seed.
|
||||
* @param key_length the length of init_key.
|
||||
*/
|
||||
void init_by_array(uint32_t *init_key, int key_length) {
|
||||
void sfmt_init_by_array(sfmt_t * sfmt, uint32_t *init_key, int key_length) {
|
||||
int i, j, count;
|
||||
uint32_t r;
|
||||
int lag;
|
||||
int mid;
|
||||
int size = N * 4;
|
||||
int size = SFMT_N * 4;
|
||||
uint32_t *psfmt32 = &sfmt->state[0].u[0];
|
||||
|
||||
if (size >= 623) {
|
||||
lag = 11;
|
||||
|
@ -572,14 +383,14 @@ void init_by_array(uint32_t *init_key, int key_length) {
|
|||
}
|
||||
mid = (size - lag) / 2;
|
||||
|
||||
memset(sfmt, 0x8b, sizeof(sfmt));
|
||||
if (key_length + 1 > N32) {
|
||||
memset(sfmt, 0x8b, sizeof(sfmt_t));
|
||||
if (key_length + 1 > SFMT_N32) {
|
||||
count = key_length + 1;
|
||||
} else {
|
||||
count = N32;
|
||||
count = SFMT_N32;
|
||||
}
|
||||
r = func1(psfmt32[idxof(0)] ^ psfmt32[idxof(mid)]
|
||||
^ psfmt32[idxof(N32 - 1)]);
|
||||
^ psfmt32[idxof(SFMT_N32 - 1)]);
|
||||
psfmt32[idxof(mid)] += r;
|
||||
r += key_length;
|
||||
psfmt32[idxof(mid + lag)] += r;
|
||||
|
@ -587,34 +398,36 @@ void init_by_array(uint32_t *init_key, int key_length) {
|
|||
|
||||
count--;
|
||||
for (i = 1, j = 0; (j < count) && (j < key_length); j++) {
|
||||
r = func1(psfmt32[idxof(i)] ^ psfmt32[idxof((i + mid) % N32)]
|
||||
^ psfmt32[idxof((i + N32 - 1) % N32)]);
|
||||
psfmt32[idxof((i + mid) % N32)] += r;
|
||||
r = func1(psfmt32[idxof(i)] ^ psfmt32[idxof((i + mid) % SFMT_N32)]
|
||||
^ psfmt32[idxof((i + SFMT_N32 - 1) % SFMT_N32)]);
|
||||
psfmt32[idxof((i + mid) % SFMT_N32)] += r;
|
||||
r += init_key[j] + i;
|
||||
psfmt32[idxof((i + mid + lag) % N32)] += r;
|
||||
psfmt32[idxof((i + mid + lag) % SFMT_N32)] += r;
|
||||
psfmt32[idxof(i)] = r;
|
||||
i = (i + 1) % N32;
|
||||
i = (i + 1) % SFMT_N32;
|
||||
}
|
||||
for (; j < count; j++) {
|
||||
r = func1(psfmt32[idxof(i)] ^ psfmt32[idxof((i + mid) % N32)]
|
||||
^ psfmt32[idxof((i + N32 - 1) % N32)]);
|
||||
psfmt32[idxof((i + mid) % N32)] += r;
|
||||
r = func1(psfmt32[idxof(i)] ^ psfmt32[idxof((i + mid) % SFMT_N32)]
|
||||
^ psfmt32[idxof((i + SFMT_N32 - 1) % SFMT_N32)]);
|
||||
psfmt32[idxof((i + mid) % SFMT_N32)] += r;
|
||||
r += i;
|
||||
psfmt32[idxof((i + mid + lag) % N32)] += r;
|
||||
psfmt32[idxof((i + mid + lag) % SFMT_N32)] += r;
|
||||
psfmt32[idxof(i)] = r;
|
||||
i = (i + 1) % N32;
|
||||
i = (i + 1) % SFMT_N32;
|
||||
}
|
||||
for (j = 0; j < N32; j++) {
|
||||
r = func2(psfmt32[idxof(i)] + psfmt32[idxof((i + mid) % N32)]
|
||||
+ psfmt32[idxof((i + N32 - 1) % N32)]);
|
||||
psfmt32[idxof((i + mid) % N32)] ^= r;
|
||||
for (j = 0; j < SFMT_N32; j++) {
|
||||
r = func2(psfmt32[idxof(i)] + psfmt32[idxof((i + mid) % SFMT_N32)]
|
||||
+ psfmt32[idxof((i + SFMT_N32 - 1) % SFMT_N32)]);
|
||||
psfmt32[idxof((i + mid) % SFMT_N32)] ^= r;
|
||||
r -= i;
|
||||
psfmt32[idxof((i + mid + lag) % N32)] ^= r;
|
||||
psfmt32[idxof((i + mid + lag) % SFMT_N32)] ^= r;
|
||||
psfmt32[idxof(i)] = r;
|
||||
i = (i + 1) % N32;
|
||||
i = (i + 1) % SFMT_N32;
|
||||
}
|
||||
|
||||
idx = N32;
|
||||
period_certification();
|
||||
initialized = 1;
|
||||
sfmt->idx = SFMT_N32;
|
||||
period_certification(sfmt);
|
||||
}
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
|
|
@ -1,17 +1,21 @@
|
|||
#pragma once
|
||||
/**
|
||||
* @file SFMT.h
|
||||
*
|
||||
* @brief SIMD oriented Fast Mersenne Twister(SFMT) pseudorandom
|
||||
* number generator
|
||||
* number generator using C structure.
|
||||
*
|
||||
* @author Mutsuo Saito (Hiroshima University)
|
||||
* @author Makoto Matsumoto (Hiroshima University)
|
||||
* @author Makoto Matsumoto (The University of Tokyo)
|
||||
*
|
||||
* Copyright (C) 2006, 2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
|
||||
* University. All rights reserved.
|
||||
* University.
|
||||
* Copyright (C) 2012 Mutsuo Saito, Makoto Matsumoto, Hiroshima
|
||||
* University and The University of Tokyo.
|
||||
* All rights reserved.
|
||||
*
|
||||
* The new BSD License is applied to this software.
|
||||
* see LICENSE.txt
|
||||
* The 3-clause BSD License is applied to this software, see
|
||||
* LICENSE.txt
|
||||
*
|
||||
* @note We assume that your system has inttypes.h. If your system
|
||||
* doesn't have inttypes.h, you have to typedef uint32_t and uint64_t,
|
||||
|
@ -28,14 +32,14 @@
|
|||
* unsigned int and 64-bit unsigned int in hexadecimal format.
|
||||
*/
|
||||
|
||||
#ifndef SFMT_H
|
||||
#define SFMT_H
|
||||
|
||||
#ifdef __cplusplus
|
||||
#ifndef SFMTST_H
|
||||
#define SFMTST_H
|
||||
#if defined(__cplusplus)
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#include <stdio.h>
|
||||
#include <assert.h>
|
||||
|
||||
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)
|
||||
#include <inttypes.h>
|
||||
|
@ -60,105 +64,232 @@ extern "C" {
|
|||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(__GNUC__)
|
||||
#define ALWAYSINLINE __attribute__((always_inline))
|
||||
#else
|
||||
#define ALWAYSINLINE
|
||||
#endif
|
||||
#include "SFMT-params.h"
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#if _MSC_VER >= 1200
|
||||
#define PRE_ALWAYS __forceinline
|
||||
#else
|
||||
#define PRE_ALWAYS inline
|
||||
/*------------------------------------------
|
||||
128-bit SIMD like data type for standard C
|
||||
------------------------------------------*/
|
||||
#if defined(HAVE_ALTIVEC)
|
||||
#if !defined(__APPLE__)
|
||||
#include <altivec.h>
|
||||
#endif
|
||||
/** 128-bit data structure */
|
||||
union W128_T {
|
||||
vector unsigned int s;
|
||||
uint32_t u[4];
|
||||
uint64_t u64[2];
|
||||
};
|
||||
#elif defined(HAVE_SSE2)
|
||||
#include <emmintrin.h>
|
||||
|
||||
/** 128-bit data structure */
|
||||
union W128_T {
|
||||
uint32_t u[4];
|
||||
uint64_t u64[2];
|
||||
__m128i si;
|
||||
};
|
||||
#else
|
||||
#define PRE_ALWAYS inline
|
||||
/** 128-bit data structure */
|
||||
union W128_T {
|
||||
uint32_t u[4];
|
||||
uint64_t u64[2];
|
||||
};
|
||||
#endif
|
||||
|
||||
uint32_t gen_rand32(void);
|
||||
uint64_t gen_rand64(void);
|
||||
void fill_array32(uint32_t *array, int size);
|
||||
void fill_array64(uint64_t *array, int size);
|
||||
void init_gen_rand(uint32_t seed);
|
||||
void init_by_array(uint32_t *init_key, int key_length);
|
||||
const char *get_idstring(void);
|
||||
int get_min_array_size32(void);
|
||||
int get_min_array_size64(void);
|
||||
/** 128-bit data type */
|
||||
typedef union W128_T w128_t;
|
||||
|
||||
/* These real versions are due to Isaku Wada */
|
||||
/** generates a random number on [0,1]-real-interval */
|
||||
inline static double to_real1(uint32_t v)
|
||||
/**
|
||||
* SFMT internal state
|
||||
*/
|
||||
struct SFMT_T {
|
||||
/** the 128-bit internal state array */
|
||||
w128_t state[SFMT_N];
|
||||
/** index counter to the 32-bit internal state array */
|
||||
int idx;
|
||||
};
|
||||
|
||||
typedef struct SFMT_T sfmt_t;
|
||||
|
||||
void sfmt_fill_array32(sfmt_t * sfmt, uint32_t * array, int size);
|
||||
void sfmt_fill_array64(sfmt_t * sfmt, uint64_t * array, int size);
|
||||
void sfmt_init_gen_rand(sfmt_t * sfmt, uint32_t seed);
|
||||
void sfmt_init_by_array(sfmt_t * sfmt, uint32_t * init_key, int key_length);
|
||||
const char * sfmt_get_idstring(sfmt_t * sfmt);
|
||||
int sfmt_get_min_array_size32(sfmt_t * sfmt);
|
||||
int sfmt_get_min_array_size64(sfmt_t * sfmt);
|
||||
void sfmt_gen_rand_all(sfmt_t * sfmt);
|
||||
|
||||
#ifndef ONLY64
|
||||
/**
|
||||
* This function generates and returns 32-bit pseudorandom number.
|
||||
* init_gen_rand or init_by_array must be called before this function.
|
||||
* @param sfmt SFMT internal state
|
||||
* @return 32-bit pseudorandom number
|
||||
*/
|
||||
inline static uint32_t sfmt_genrand_uint32(sfmt_t * sfmt) {
|
||||
uint32_t r;
|
||||
uint32_t * psfmt32 = &sfmt->state[0].u[0];
|
||||
|
||||
if (sfmt->idx >= SFMT_N32) {
|
||||
sfmt_gen_rand_all(sfmt);
|
||||
sfmt->idx = 0;
|
||||
}
|
||||
r = psfmt32[sfmt->idx++];
|
||||
return r;
|
||||
}
|
||||
#endif
|
||||
/**
|
||||
* This function generates and returns 64-bit pseudorandom number.
|
||||
* init_gen_rand or init_by_array must be called before this function.
|
||||
* The function gen_rand64 should not be called after gen_rand32,
|
||||
* unless an initialization is again executed.
|
||||
* @param sfmt SFMT internal state
|
||||
* @return 64-bit pseudorandom number
|
||||
*/
|
||||
inline static uint64_t sfmt_genrand_uint64(sfmt_t * sfmt) {
|
||||
#if defined(BIG_ENDIAN64) && !defined(ONLY64)
|
||||
uint32_t * psfmt32 = &sfmt->state[0].u[0];
|
||||
uint32_t r1, r2;
|
||||
#else
|
||||
uint64_t r;
|
||||
#endif
|
||||
uint64_t * psfmt64 = &sfmt->state[0].u64[0];
|
||||
assert(sfmt->idx % 2 == 0);
|
||||
|
||||
if (sfmt->idx >= SFMT_N32) {
|
||||
sfmt_gen_rand_all(sfmt);
|
||||
sfmt->idx = 0;
|
||||
}
|
||||
#if defined(BIG_ENDIAN64) && !defined(ONLY64)
|
||||
r1 = psfmt32[sfmt->idx];
|
||||
r2 = psfmt32[sfmt->idx + 1];
|
||||
sfmt->idx += 2;
|
||||
return ((uint64_t)r2 << 32) | r1;
|
||||
#else
|
||||
r = psfmt64[sfmt->idx / 2];
|
||||
sfmt->idx += 2;
|
||||
return r;
|
||||
#endif
|
||||
}
|
||||
|
||||
/* =================================================
|
||||
The following real versions are due to Isaku Wada
|
||||
================================================= */
|
||||
/**
|
||||
* converts an unsigned 32-bit number to a double on [0,1]-real-interval.
|
||||
* @param v 32-bit unsigned integer
|
||||
* @return double on [0,1]-real-interval
|
||||
*/
|
||||
inline static double sfmt_to_real1(uint32_t v)
|
||||
{
|
||||
return v * (1.0/4294967295.0);
|
||||
/* divided by 2^32-1 */
|
||||
}
|
||||
|
||||
/** generates a random number on [0,1]-real-interval */
|
||||
inline static double genrand_real1(void)
|
||||
/**
|
||||
* generates a random number on [0,1]-real-interval
|
||||
* @param sfmt SFMT internal state
|
||||
* @return double on [0,1]-real-interval
|
||||
*/
|
||||
inline static double sfmt_genrand_real1(sfmt_t * sfmt)
|
||||
{
|
||||
return to_real1(gen_rand32());
|
||||
return sfmt_to_real1(sfmt_genrand_uint32(sfmt));
|
||||
}
|
||||
|
||||
/** generates a random number on [0,1)-real-interval */
|
||||
inline static double to_real2(uint32_t v)
|
||||
/**
|
||||
* converts an unsigned 32-bit integer to a double on [0,1)-real-interval.
|
||||
* @param v 32-bit unsigned integer
|
||||
* @return double on [0,1)-real-interval
|
||||
*/
|
||||
inline static double sfmt_to_real2(uint32_t v)
|
||||
{
|
||||
return v * (1.0/4294967296.0);
|
||||
/* divided by 2^32 */
|
||||
}
|
||||
|
||||
/** generates a random number on [0,1)-real-interval */
|
||||
inline static double genrand_real2(void)
|
||||
/**
|
||||
* generates a random number on [0,1)-real-interval
|
||||
* @param sfmt SFMT internal state
|
||||
* @return double on [0,1)-real-interval
|
||||
*/
|
||||
inline static double sfmt_genrand_real2(sfmt_t * sfmt)
|
||||
{
|
||||
return to_real2(gen_rand32());
|
||||
return sfmt_to_real2(sfmt_genrand_uint32(sfmt));
|
||||
}
|
||||
|
||||
/** generates a random number on (0,1)-real-interval */
|
||||
inline static double to_real3(uint32_t v)
|
||||
/**
|
||||
* converts an unsigned 32-bit integer to a double on (0,1)-real-interval.
|
||||
* @param v 32-bit unsigned integer
|
||||
* @return double on (0,1)-real-interval
|
||||
*/
|
||||
inline static double sfmt_to_real3(uint32_t v)
|
||||
{
|
||||
return (((double)v) + 0.5)*(1.0/4294967296.0);
|
||||
/* divided by 2^32 */
|
||||
}
|
||||
|
||||
/** generates a random number on (0,1)-real-interval */
|
||||
inline static double genrand_real3(void)
|
||||
{
|
||||
return to_real3(gen_rand32());
|
||||
}
|
||||
/** These real versions are due to Isaku Wada */
|
||||
|
||||
/** generates a random number on [0,1) with 53-bit resolution*/
|
||||
inline static double to_res53(uint64_t v)
|
||||
{
|
||||
return v * (1.0/18446744073709551616.0L);
|
||||
}
|
||||
|
||||
/** generates a random number on [0,1) with 53-bit resolution from two
|
||||
* 32 bit integers */
|
||||
inline static double to_res53_mix(uint32_t x, uint32_t y)
|
||||
{
|
||||
return to_res53(x | ((uint64_t)y << 32));
|
||||
}
|
||||
|
||||
/** generates a random number on [0,1) with 53-bit resolution
|
||||
/**
|
||||
* generates a random number on (0,1)-real-interval
|
||||
* @param sfmt SFMT internal state
|
||||
* @return double on (0,1)-real-interval
|
||||
*/
|
||||
inline static double genrand_res53(void)
|
||||
inline static double sfmt_genrand_real3(sfmt_t * sfmt)
|
||||
{
|
||||
return to_res53(gen_rand64());
|
||||
return sfmt_to_real3(sfmt_genrand_uint32(sfmt));
|
||||
}
|
||||
|
||||
/** generates a random number on [0,1) with 53-bit resolution
|
||||
using 32bit integer.
|
||||
/**
|
||||
* converts an unsigned 32-bit integer to double on [0,1)
|
||||
* with 53-bit resolution.
|
||||
* @param v 32-bit unsigned integer
|
||||
* @return double on [0,1)-real-interval with 53-bit resolution.
|
||||
*/
|
||||
inline static double genrand_res53_mix(void)
|
||||
inline static double sfmt_to_res53(uint64_t v)
|
||||
{
|
||||
return v * (1.0/18446744073709551616.0);
|
||||
}
|
||||
|
||||
/**
|
||||
* generates a random number on [0,1) with 53-bit resolution
|
||||
* @param sfmt SFMT internal state
|
||||
* @return double on [0,1) with 53-bit resolution
|
||||
*/
|
||||
inline static double sfmt_genrand_res53(sfmt_t * sfmt)
|
||||
{
|
||||
return sfmt_to_res53(sfmt_genrand_uint64(sfmt));
|
||||
}
|
||||
|
||||
|
||||
/* =================================================
|
||||
The following function are added by Saito.
|
||||
================================================= */
|
||||
/**
|
||||
* generates a random number on [0,1) with 53-bit resolution from two
|
||||
* 32 bit integers
|
||||
*/
|
||||
inline static double sfmt_to_res53_mix(uint32_t x, uint32_t y)
|
||||
{
|
||||
return sfmt_to_res53(x | ((uint64_t)y << 32));
|
||||
}
|
||||
|
||||
/**
|
||||
* generates a random number on [0,1) with 53-bit resolution
|
||||
* using two 32bit integers.
|
||||
* @param sfmt SFMT internal state
|
||||
* @return double on [0,1) with 53-bit resolution
|
||||
*/
|
||||
inline static double sfmt_genrand_res53_mix(sfmt_t * sfmt)
|
||||
{
|
||||
uint32_t x, y;
|
||||
|
||||
x = gen_rand32();
|
||||
y = gen_rand32();
|
||||
return to_res53_mix(x, y);
|
||||
x = sfmt_genrand_uint32(sfmt);
|
||||
y = sfmt_genrand_uint32(sfmt);
|
||||
return sfmt_to_res53_mix(x, y);
|
||||
}
|
||||
#ifdef __cplusplus
|
||||
|
||||
#if defined(__cplusplus)
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
|
Loading…
Reference in a new issue